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Task

● Language Modeling
(auto-complete)

● Probabilistic Modeling
○ ML: Logistic Regression
○ Probability Theory

how?
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Applications:
● Auto-complete: What word is next? 
● Machine Translation: Which translation is most likely?
● Spell Correction: Which word is most likely given 

error?
● Speech Recognition: What did they just say?

“eyes aw of an” 
(example from Jurafsky, 2017)
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What about Logistic Regression?  Y = next word
P(Y|X)   =  P(Xn | X1, X2, X3, ...)

Not a terrible option, but X1 through Xn-1 would 
be modeled as independent dimensions. Let’s 
revisit later. 
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Bigram Model: k = 1; 

Problem: even the Web isn’t large enough to enable 
good estimates of most phrases. 

Example from (Jurafsky, 2017)

Markov Assumption:

P(Xn| X1…, Xn-1)  ≈ P(Xn| Xn-k, …, Xn-1)    where k < n

Example generated sentence:

outside, new, car, parking, lot, of, the, agreement, reached

P(X1 = “outside”, X2=”new”, X3 = “car”, ....) ≈ P(X2=”new”|X1 = “outside) * 
P(X3=”car” | X2=”new”) * …   
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a sequence of 
natural language 

Trained
Language 

Model

What is the next word 
in the sequence?Test Corpus

Perplexity

Apply Chain Rule:Apply Chain Rule:

Thus, 
PP for Bigrams: 



Coding Example: Modeling Tweets from POS data

1. Count unigrams, bigrams, and trigrams
2. Train probabilities for unigram, bigram, and trigram 

models (over training)
3. Generate language

Trigram model when good evidence (high counts)
Backing off to bigram or even unigram



Practical Considerations: 

● Use log probability to keep numbers reasonable and save computation.
(uses addition rather than multiplication)

● Out-of-vocabulary (OOV)
Choose minimum frequency and mark as <OOV> 

● Sentence start and end: <s> this is a sentence </s>

● Alternative to backoff: Interpolation

Coding Example: Modeling Tweets from POS data
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Unsmoothed probs
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Smoothed

first word(Xi-1) \ 
second word (Xi) P(Xi | Xi-1)

Example from (Jurafsky, 2017)

(vocabulary size)



Why Smoothing? Generalizes

Original

With Smoothing

(Example from Jurafsky / Originally Dan Klein)



Why Smoothing? Generalizes

Add-one is blunt: 
can lead to very large changes. 

Better Smoothing:

● Good-Turing

● Kneser-Nay

These are outside scope of course 
because we will eventually cover, even 
stronger, deep learning based models. 



Language Modeling Summary

● Two versions of assigning probability to sequence of words

● Applications

● The Chain Rule, The Markov Assumption:

● Training a unigram, bigram, trigram model based on counts

● Evaluation: Perplexity

● Zeros, Low Counts,  and Generalizability

● Add-one smoothing 


