CSE392 - Spring 2019 Special Topic in CS

Task

Language Modeling (auto-complete)

- Probabilistic Modeling
 - ML: Logistic Regression \bigcirc
 - **Probability Theory** \bigcirc

-- assigning a probability to sequences of words.

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$:probability of a sequence of words

-- assigning a probability to sequences of words.

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$:probability of a sequence of words

Version 2: Compute $P(w_5 | w_1, w_2, w_3, w_4)$ = $P(w_n | w_1, w_2, ..., w_{n-1})$:probability of a next word given history

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$:probability of a sequence of words $P(He \ ate \ the \ cake \ with \ the \ fork) = ?$

Version 2: Compute $P(w_5 | w_1, w_2, w_3, w_4)$ = $P(w_n | w_1, w_2, ..., w_{n-1})$:probability of a next word given history P(fork | He ate the cake with the) = ?

Applications:

- Auto-complete: What word is next?
- Machine Translation: Which translation is most likely?
- Spell Correction: Which word is most likely given error?
- Speech Recognition: What did they just say?
 "eyes aw of an"

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$:probability of a sequence of words $P(He \ ate \ the \ cake \ with \ the \ fork) = ?$

Version 2: Compute $P(w_5 | w_1, w_2, w_3, w_4)$ = $P(w_n | w_1, w_2, ..., w_{n-1})$:probability of a next word given history P(fork | He ate the cake with the) = ?

Simple Solution

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$:probability of a sequence of words $P(He \ ate \ the \ cake \ with \ the \ fork) =$

count(He ate the cake with the fork)
count(* * * * * * * * *)

Simple Solution: The Maximum Likelihood Estimate

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$:probability of a sequence of words *P*(*He ate the cake with the fork*) =

	count(<u> He</u>	ate	<u>the</u>	<u>cake</u>	<u>with</u>	<u>the</u>	fork
total number of observed <i>7grams</i>	count((*	*	*	*	*	*	*)

Simple Solution: The Maximum Likelihood Estimate

P(*He ate the cake with the fork*) =

count(He ate the cake with the fork)
count(* * * * * * * * *)

P(*fork* | *He ate the cake with the*) =

<u>count(He ate the cake with the fork)</u> count(He at the cake with the)

Simple Solution: The Maximum Likelihood Estimate

Problem: even the Web isn't large enough to enable good estimates of most phrases.

P(*He ate the cake with the fork*) =

count(He ate the cake with the fork)
count(* * * * * * * * *)

P(*fork* | *He ate the cake with the*) =

<u>count(He ate the cake with the fork)</u> count(He at the cake with the)

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$$

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

 $P(B|A) = P(B, A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B, A) = P(A, B)$ P(A, B, C) = P(A)P(B|A)P(C|A, B)

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$$

P(A, B, C) = P(A)P(B|A)P(C|A, B)

The Chain Rule:

 $P(X_1, X_2..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...P(X_n|X_1, ..., X_{n-1})$

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

 $P(B|A) = P(B, A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B, A) = P(A, B)$ P(A, B, C) = P(A)P(B|A)P(C|A, B)The Chain Rule: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i|X_1, X_2, ..., X_i)$ $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...P(X_n|X_1, ..., X_{n-1})$

Markov Assumption:

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$$

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

 $P(B|A) = P(B, A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B, A) = P(A, B)$ P(A, B, C) = P(A)P(B|A)P(C|A, B)The Chain Rule: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i|X_1, X_2, ..., X_i)$ $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...P(X_n|X_1, ..., X_{n-1})$

Markov Assumption: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$ $P(X_n | X_{1..., X_{n-1}}) \approx P(X_n | X_{n-k}, ..., X_{n-1})$ where k < n

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

 $P(B|A) = P(B, A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$ P(A, B, C) = P(A)P(B|A)P(C|A, B)The Chain Rule: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i|X_1, X_2, ..., X_i)$ $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...P(X_n|X_1, ..., X_{n-1})$

Markov Assumption:

 $P(Xn \mid X)$

The Chai

 $P(X_1, X_2..., X_n) = P(X_1, X_2..., X_n)$

What about Logistic Regression? Y = next wordP(Y|X) = P(Xn | X1, X2, X3, ...) $(1), ..., X_i$

 $P(\Lambda_i|\Lambda_1, X_2, ..., X_i)$

 $X_2|X_1|P(X_3|X_1, X_2)...P(X_n|X_1, ..., X_{n-1})$

Not a terrible option, but X1 through Xn-1 would . be modeled as independent dimensions. Let's revisit later. Markov Assumption: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$ $P(Xn | X_{1..., X_{n-1}}) \approx P(Xn | X_{n-k}, ..., X_{n-1})$ where k < n

Unigram Model:
$$\mathbf{k} = \mathbf{0}$$
; $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i)$

 $P(B|A) = P(B, A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$ P(A, B, C) = P(A)P(B|A)P(C|A, B)The Chain Rule: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i|X_1, X_2, ..., X_i)$ $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...P(X_n|X_1, ..., X_{n-1})$

Markov Assumption: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$ $P(Xn | X_{1..., X_{n-1}}) \approx P(Xn | X_{n-k}, ..., X_{n-1})$ where k < n

Bigram Model: k = 1;
$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-1})$$

Example generated sentence:

outside, new, car, parking, lot, of, the, agreement, reached

 $P(X1 = "outside", X2 = "new", X3 = "car",) \approx P(X2 = "new"|X1 = "outside) * P(X3 = "car" | X2 = "new") * ...$

second word

١

first word $^{\mathsf{N}}$

Bigram Counts

•	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0
			Example	from (Jura	fsky, 2017)			
Training Corpus								

first word

Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend			
i	5	827	0	9	0	0	0	2			
want	2	0	608	1	6	6	5	1			
to	2	0	4	686	2	0	6	211			
eat	0	0	2	0	16	2	42	0			
chinese	1	0	0	0	0	82	1	0			
food	15	0	15	0	1	4	0	0			
lunch	2	0	0	0	0	1	0	0			
spend	1	0	1	0	0	0	0	0			
	i	want	to	eat	chinese	food	lunch	spend			
	2533	927	2417	746	158	1093	341	278			
Training (Training Corpus (fit, learn)										

 $^{\mathsf{N}}$ second word

first word

Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend		
i	5	827	0	9	0	0	0	2		
want	2	0	608	1	6	6	5	1		
to	2	0	4	686	2	0	6	211		
eat	0	0	2	0	16	2	42	0		
chinese	1	0	0	0	0	82	1	0		
food	15	0	15	0	1	4	0	0		
lunch	2	0	0	0	0	1	0	0		
spend	1	0	1	0	0	0	0	0		
	i	want	to	eat	chinese	food	lunch	spend		
	2533	927	2417	746	158	1093	341	278		
Bigram model: $P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i X_{i-1})$										

second word (Xi)

P(Xi | Xi-1)

first word(Xi-1)

	i	want	to	eat	chinese	food	lunch	spend		
i	0.002	0.33	0	0.0036	0	0	0	0.00079		
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011		
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087		
eat	0	0	0.0027	0	0.021	0.0027	0.056	0		
chinese	0.0063	0	0	0	0	0.52	0.0063	0		
food	0.014	0	0.014	0	0.00092	0.0037	0	0		
lunch	0.0059	0	0	0	0	0.0029	0	0		
spend	0.0036	0	0.0036	0	0	0	0	0		
	i	want	to	eat	chinese	food	lunch	spend		
	2533	927	2417	746	158	1093	341	278		
Bigram model: $P(X_1, X_2,; X_n) = \prod_{i=1}^n P(X_i X_{i-1})$ Need to estimate: $P(X_i X_{i-1}) = \text{count}(Y_i Y_i) / \text{count}(Y_i)$										

second word (Xi)

P(Xi | Xi-1)

Evaluation

$$= \sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$$

Evaluation

Evaluation

Coding Example: Modeling Tweets from POS data

- 1. Count unigrams, bigrams, and trigrams
- 2. Train probabilities for unigram, bigram, and trigram models (over training)
- 3. Generate language

Trigram model when good evidence (high counts) Backing off to bigram or even unigram

Coding Example: Modeling Tweets from POS data

Practical Considerations:

- Use log probability to keep numbers reasonable and save computation. (uses addition rather than multiplication)
- Out-of-vocabulary (OOV)
 Choose minimum frequency and mark as <OOV>
- Sentence start and end: <*s*> *this is a sentence* <*/s*>

Zeros and Smoothing

first word(Xi-1) \setminus second word (Xi)

P(Xi | Xi-1)

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Zeros and Smoothing

first word

Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Laplace ("Add one") smoothing: add 1 to all counts

Zeros and Smoothing

first word

Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace ("Add one") smoothing: add 1 to all counts

Unsmoothed probs

second word (Xi)

P(Xi | Xi-1)

first word(Xi-1)

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Smoothed

ed

$$P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$
second word (Xi)

$$P(Xi \mid Xi-1)$$

first word(Xi-1)

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Why Smoothing? Generalizes

Original

With Smoothing

(Example from Jurafsky / Originally Dan Klein)

Why Smoothing? Generalizes

- Add-one is blunt: can lead to very large changes.
- Better Smoothing:
 - Good-Turing
 - Kneser-Nay

These are outside scope of course because we will eventually cover, even stronger, deep learning based models.

Language Modeling Summary

- Two versions of assigning probability to sequence of words
- Applications
- The Chain Rule, The Markov Assumption: $P(X_1, X_2, ..., X_n) = \prod P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$
- Training a unigram, bigram, trigram model based on counts
- Evaluation: Perplexity
- Zeros, Low Counts, and Generalizability
- Add-one smoothing